Introduction to Sentential Logic Part 2 Solutions

Author: Indigo Curnick

Date: 2025-04-19

#logic   #mathematics  



You can find the relevant blog here

  1. \(P(J) \wedge P(B)\) where \(P(X)\) means "\(X\) will come to the party", \(J\) means "John" and \(B\) means "Barry"
  2. \(G(L) \vee G(B)\) where \(G(X)\) means "I will go to \(X\)", \(L\) means "London" and \(B\) means "Bristol"
  3. \(T(R) \vee T(S) \wedge \neg (T(R) \wedge T(S))\), where \(T(X)\) means "it will \(X\) tomorrow", \(R\) means "rains" and \(S\) means "snows" (we could alternatively represent this as \(T(R) \text{ xor } T(S)\) if we allow for an \(\text{xor}\) operator)
  4. \(P(J) \wedge P(B) \vee (\neg P(J) \wedge \neg P(B))\) but we can also use DeMorgan's law to make this \(P(J) \wedge P(B) \vee \neg (P(J) \vee P(B))\). \(P(X)\) means "\(X\) will come to the party", \(J\) means "John" and \(B\) means "Barry"
  5. \(\neg ((T(J) \wedge M(J)) \wedge (T(B) \wedge M(B)))\) but we can also use deMorgan's law to turn this into \(\neg (T(J) \wedge M(J)) \vee \neg (T(B) \wedge M(B))\). \(T(X)\) means "\(X\) is tall", \(M(X)\) means "\(X\) is muscular", \(J\) means "John" and \(B\) means "Barry"
\(P\) \(Q\) \(\neg (P \vee Q)\) \(\neg P \wedge \neg Q\)
True True False False
True False False False
False True False False
False False True True
\(P\) \(Q\) \(P \vee Q\) \(\neg P \vee \neg Q\) \((P \vee Q) \wedge (\neg P \vee \neg Q)\)
True True True False False
True False True True True
False True True True True
False False False True False
  1. \(P \vee Q\)
  2. \(P\) (if this one stumps you, try making a truth table for \(Q \vee \neg Q\))
  3. \(P \wedge \neg (Q \wedge R)\)
  4. \(P \vee (\neg R \wedge Q)\)